Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Soil CO2 concentration and flux measurements are important in diverse fields, including geoscience, climate science, soil ecology, and agriculture. However, practitioners in these fields face difficulties with existing soil CO2 gas probes, which have had problems with high costs and frequent failures when deployed. Confronted with a recent research project’s need for long-term in-soil CO2 monitoring at a large number of sites in harsh environmental conditions, we developed our own CO2 logging system to reduce expense and avoid the expected failures of commercial instruments. Our newly developed soil probes overcome the central challenge of soil gas probes—surviving continuous exposure to soil moisture while remaining open to soil gases—via three approaches: a 3D printed housing (economical for small-scale production) following design principles that correct the usual water permeability flaw of 3D printed materials; passive moisture protection via a hydrophobic, CO2-permeable PTFE membrane; and active moisture protection via a low-power micro-dehumidifier. Our CO2 instrumentation performed well and yielded a high-quality dataset that includes signals related to a prescribed fire as well as seasonal and diel cycles. We expect our technology to support underground CO2 monitoring in fields where it is already practiced and stimulate its expansion into diverse new fields.more » « less
- 
            Many species of animals exhibit an intuitive sense of number, suggesting a fundamental neural mechanism for representing numerosity in a visual scene. Recent empirical studies demonstrate that early feedforward visual responses are sensitive to numerosity of a dot array but substantially less so to continuous dimensions orthogonal to numerosity, such as size and spacing of the dots. However, the mechanisms that extract numerosity are unknown. Here, we identified the core neurocomputational principles underlying these effects: (1) center-surround contrast filters; (2) at different spatial scales; with (3) divisive normalization across network units. In an untrained computational model, these principles eliminated sensitivity to size and spacing, making numerosity the main determinant of the neuronal response magnitude. Moreover, a model implementation of these principles explained both well-known and relatively novel illusions of numerosity perception across space and time. This supports the conclusion that the neural structures and feedforward processes that encode numerosity naturally produce visual illusions of numerosity. Taken together, these results identify a set of neurocomputational properties that gives rise to the ubiquity of the number sense in the animal kingdom.more » « less
- 
            Abstract Sample return capsules (SRCs) entering Earth’s atmosphere at hypervelocity from interplanetary space are a valuable resource for studying meteor phenomena. The 2023 September 24 arrival of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer SRC provided an unprecedented chance for geophysical observations of a well-characterized source with known parameters, including timing and trajectory. A collaborative effort involving researchers from 16 institutions executed a carefully planned geophysical observational campaign at strategically chosen locations, deploying over 400 ground-based sensors encompassing infrasound, seismic, distributed acoustic sensing, and Global Positioning System technologies. Additionally, balloons equipped with infrasound sensors were launched to capture signals at higher altitudes. This campaign (the largest of its kind so far) yielded a wealth of invaluable data anticipated to fuel scientific inquiry for years to come. The success of the observational campaign is evidenced by the near-universal detection of signals across instruments, both proximal and distal. This paper presents a comprehensive overview of the collective scientific effort, field deployment, and preliminary findings. The early findings have the potential to inform future space missions and terrestrial campaigns, contributing to our understanding of meteoroid interactions with planetary atmospheres. Furthermore, the data set collected during this campaign will improve entry and propagation models and augment the study of atmospheric dynamics and shock phenomena generated by meteoroids and similar sources.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
